De Broglie Wavelength Formula Equation, Concept, Solved Examples


What is the significance of de Broglie's equation? Quora

In 1924, French scientist Louis de Broglie derived an equation, known as the De Broglie Wavelength Formula, that described the wave nature of any particle. Thus, establishing the wave-particle duality for the matter. Microscopic particle-like electrons also proved to possess this dual nature property.


de Broglie equation Science, quantum theory ShowMe

De Broglie Wavelength Formula is used to calculate the wavelength and momentum in any given problems based on this concept. Solved Examples Question 1: Find the wavelength of an electron moving with a speed of ms-1. Solution: Given: Velocity of the electron, v =2 ×106 ms-1 Mass of electron, m =9.1 ×10-31 Kg


Question Video Identifying the de Broglie Relationship Nagwa

De Broglie's hypothesis is an independent postulate about the structure of nature. In this respect, its status is the same as that of Newton's laws or the laws of thermodynamics. Nonetheless, we can construct a line of thought that is probably similar to de Broglie's, recognizing that these are heuristic arguments and not logical.


De Broglie's Formula YouTube

Derivation de Broglie derived the above relationship as follows: 1) E = hν for a photon and λν = c for an electromagnetic wave. 2) E = mc 2, means λ = h/mc, which is equivalent to λ = h/p. Note: m is the relativistic mass and not the rest mass since the rest mass of a photon is zero.


The De Broglie Wavelength Equation YouTube

De Broglie hypothesis Propagation of de Broglie waves in one dimension - real part of the complex amplitude is blue, imaginary part is green. The probability (shown as the color opacity) of finding the particle at a given point x is spread out like a waveform; there is no definite position of the particle.


de Broglie equation, derivation, and its Significance Chemistry Notes

Solution: Reasoning: The de Broglie wavelength of an object is defined as λ = h/p. Details of the calculation: λ = h/p, E = p 2 / (2m), p = √ (2mE), λ = h/√ (2mE). The energy of the electron is 25000 eV * 1.6*10 -19 J/eV = 4*10 -15 J. λ = (6.626*10 -34 Js)/√ (2*9.1*10 -31 kg*4*10 -15 J) = 7.8*10 -12 m.


PM [D02] de Broglie deriving the Equation

Is it a particle or a wave? This is the question that physicists of the 1920s were asking about light. In 1924, Louis de Broglie took this question to another level as he explored how electrons - which are matter, and were thought to be simply particles - can behave like waves. Questions Tips & Thanks Sort by: Top Voted Patrick 7 years ago


Двојна природа микрочестица Физика и Оптика

The de Broglie wavelength of the photon can be computed using the formula: λ = h p = 6.63×10−34 1.50×10−27 = 4.42 ×10−7 = 442 ×10−9 = 442 Nano meter. Therefore, the de Broglie wavelength of the photon will be 442 nm. This wavelength will be in the blue-violet part of the visible light spectrum.


De Broglie theory (Duality) Overall Science

The de Broglie equation is one of the equations that is commonly used to define the wave properties of matter. It basically describes the wave nature of the electron. Electromagnetic radiation exhibits the dual nature of a particle (having a momentum) and wave (expressed in frequency and wavelength).


De Broglie wave equation Derivation by SK

De Broglie Wavelength Matter waves are the central part of the theory of quantum mechanics. All matter can exhibit wave-like behaviour. The concept that matter behaves like a wave this concept was proposed by a French physicist named Louis de Broglie in the year 1924. It is also known as the de Broglie hypothesis.


De Broglie Wavelength Formula Equation, Concept, Solved Examples

De Broglie Wavelength Formula is a formula that defines the nature of a wave to that of a particle. Many experiments show that light can behave both as a wave and as a particle. The particles of light are known as photons.


Question Video Calculating the de Broglie Wavelength of a Particle Nagwa

Now comes the second equation. It is one of two related equations called the de Broglie equations. You can read more about de Broglie's work here. He received the 1929 Nobel Prize in Physics for this work. (I will discuss the second de Broglie equation below the following example problems.) Equation Number Two: λ = h/p


Question Video Calculating the de Broglie Wavelength of an Electron

To determine the de Broglie wavelength of a particle given its mass and velocity, you need to: Multiply the velocity by mass. Their product is the particle's momentum. Divide Planck's constant by the momentum found in Step 1. The result you've got is exactly the de Broglie wavelength of your particle. Congrats!


Question Video Relating Momentum to the de Broglie Wavelength Nagwa

This chemistry video tutorial explains how to calculate the de broglie wavelength of large objects and small particles such as electrons. It contains plenty.


de Broglie Equation — Overview & Calculations Expii

The de Broglie equation is an equation used to describe the wave properties of matter, specifically, the wave nature of the electron : λ = h/mv, where λ is wavelength, h is Planck's constant, m is the mass of a particle, moving at a velocity v. de Broglie suggested that particles can exhibit properties of waves.


Structure Of Atom Concepts

De Broglie was able to mathematically determine what the wavelength of an electron should be by connecting Albert Einstein's mass-energy equivalency equation (E = mc 2) with Planck's equation (E = hf), the wave speed equation (v = λf ) and momentum in a series of substitutions.

Scroll to Top